Spitzer Cores to Disks (c2d) Legacy Observations of Weak-line T Tauri Stars Deborah Padgett¹, N. Evans², K. Stapelfeldt³, D. Koerner⁴, A. Sargent⁵, L. Allen⁶, P. Harvey², P. Myers⁷, E. van Dishoek⁸, and L. Mundy⁹ (Email: dlp@ipac.caltech.edu) ¹Spitzer Science Center, California Institute of Technology, Pasadena, California ²University of Texas at Austin, Austin, Texas ³Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California ⁴Department of Physics and Astronomy, Northern Arizona University, Flagstaff, Arizona ⁵California Institute of Technology, Pasadena, California ⁶Harvard-Smithsonian Center for Astrophysics/Smithsonian Astrophysical Observatory, Cambridge, Massachusetts ⁷Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts ⁸Leiden Observatory, University of Leiden, Leiden, The Netherlands ⁹University of Maryland, College Park, Maryland The "Cores to Disks" (c2d) Spitzer Legacy project will be observing ~ 170 weak-line T Tauri stars in and around the Ophiuchus, Lupus, Chamaeleon, and Taurus star-forming molecular clouds. These objects were specifically chosen as 1–10 Myr stars without IRAS or ISO detections. Our objective is to determine whether these young stars are diskless or have remnant disks which are below the detection threshold of previous infrared missions. Our Spitzer IRAC and MIPS observations provide 3.6–70 μ m spectral energy distributions at unprecedented sensitivity. Preliminary MIPS results for the first few targets show stars with and without detectable 24 and 70 μ m excess emission, which indicates the presence of dust in the terrestrial planet-forming region a few AU from the star. We will present the latest results of the survey as of July 2004.